skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hangleiter, Dominik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on verification of an analog quantum simulation, in which the verifier need only run an O ( λ 2 ) -time classical computation, and the prover need only prepare O ( 1 ) samples of a history state and perform O ( λ 2 ) single-qubit measurements, for a security parameter λ . We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Realizing computationally complex quantum circuits in the presence of noise and imperfections is a challenging task. While fault-tolerant quantum computing provides a route to reducing noise, it requires a large overhead for generic algorithms. Here, we develop and analyze a hardware-efficient, fault-tolerant approach to realizing complex sampling circuits. We co-design the circuits with the appropriate quantum error-correcting codes for efficient implementation in a reconfigurable neutral atom-array architecture, constituting what we call a of the sampling algorithm. Specifically, we consider a family of 2 D , D , 2 quantum error-detecting codes whose transversal and permutation gate set can realize arbitrary degree- D instantaneous quantum polynomial (IQP) circuits. Using native operations of the code and the atom-array hardware, we compile a fault-tolerant and fast-scrambling family of such IQP circuits in a hypercube geometry, realized recently in the experiments by Bluvstein [Nature 626, 7997 (2024)]. We develop a theory of second-moment properties of degree- D IQP circuits for analyzing hardness and verification of random sampling by mapping to a statistical mechanics model. We provide strong evidence that sampling from these hypercube IQP circuits is classically hard to simulate even at relatively low depths. We analyze the linear cross-entropy benchmark (XEB) in comparison to the average fidelity and, depending on the local noise rate, find two different asymptotic regimes. To realize a fully scalable approach, we first show that Bell sampling from degree-4 IQP circuits is classically intractable and can be efficiently validated. We further devise new families of O ( d D ) , D , d color codes of increasing distance d , permitting exponential error suppression for transversal IQP sampling. Our results highlight fault-tolerant compiling as a powerful tool in co-designing algorithms with specific error-correcting codes and realistic hardware. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this Letter, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of k-regular graph states on n qubits. We show that, as the regularity parameter is increased from 1 to n−1, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at k = 3, and a transition back to easy and low entanglement at k = n−3. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity. 
    more » « less
  5. Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the Rényi-2 Page curve (the average Rényi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the Rényi-2 entropy by studying its variance. Using the aforementioned results for the Rényi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity. 
    more » « less
  6. Abstract Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance fromd = 3 tod = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. 
    more » « less